Inversing the natural hydrogen bonding rule to selectively amplify GC-rich ADAR-edited RNAs

نویسندگان

  • Rodolphe Suspène
  • Myrtille Renard
  • Michel Henry
  • Denise Guétard
  • David Puyraimond-Zemmour
  • Agnès Billecocq
  • Michèle Bouloy
  • Frederic Tangy
  • Jean-Pierre Vartanian
  • Simon Wain-Hobson
چکیده

DNA complementarity is expressed by way of three hydrogen bonds for a G:C base pair and two for A:T. As a result, careful control of the denaturation temperature of PCR allows selective amplification of AT-rich alleles. Yet for the same reason, the converse is not possible, selective amplification of GC-rich alleles. Inosine (I) hydrogen bonds to cytosine by two hydrogen bonds while diaminopurine (D) forms three hydrogen bonds with thymine. By substituting dATP by dDTP and dGTP by dITP in a PCR reaction, DNA is obtained in which the natural hydrogen bonding rule is inversed. When PCR is performed at limiting denaturation temperatures, it is possible to recover GC-rich viral genomes and inverted Alu elements embedded in cellular mRNAs resulting from editing by dsRNA dependent host cell adenosine deaminases. The editing of Alu elements in cellular mRNAs was strongly enhanced by type I interferon induction indicating a novel link mRNA metabolism and innate immunity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principles of protein-DNA recognition revealed in the structural analysis of Ndt80-MSE DNA complexes.

The Saccharomyces cerevisiae transcription factor Ndt80 selectively binds a DNA consensus sequence (the middle sporulation element [MSE]) to activate gene expression after the successful completion of meiotic recombination. Here we report the X-ray crystal structures of Ndt80 bound to ten distinct MSE variants. Comparison of these structures with the structure of Ndt80 bound to a consensus MSE ...

متن کامل

RNA hairpins in noncoding regions of human brain and Caenorhabditis elegans mRNA are edited by adenosine deaminases that act on RNA.

Adenosine deaminases that act on RNA (ADARs) constitute a family of RNA-editing enzymes that convert adenosine to inosine within double-stranded regions of RNA. We previously developed a method to identify inosine-containing RNAs and used it to identify five ADAR substrates in Caenorhabditis elegans. Here we use the same method to identify five additional C. elegans substrates, including three ...

متن کامل

Identification of Widespread Ultra-Edited Human RNAs

Adenosine-to-inosine modification of RNA molecules (A-to-I RNA editing) is an important mechanism that increases transciptome diversity. It occurs when a genomically encoded adenosine (A) is converted to an inosine (I) by ADAR proteins. Sequencing reactions read inosine as guanosine (G); therefore, current methods to detect A-to-I editing sites align RNA sequences to their corresponding DNA reg...

متن کامل

Recognition and coupling of A-to-I edited sites are determined by the tertiary structure of the RNA

Adenosine-to-inosine (A-to-I) editing has been shown to be an important mechanism that increases protein diversity in the brain of organisms from human to fly. The family of ADAR enzymes converts some adenosines of RNA duplexes to inosines through hydrolytic deamination. The adenosine recognition mechanism is still largely unknown. Here, to investigate it, we analyzed a set of selectively edite...

متن کامل

Heterochromatin: On the ADAR Radar?

Vigilin proteins, the absence of which is known to cause abnormalities in heterochromatin, have been found to bind edited RNAs. Molecular complexes including vigilin comprise proteins involved with RNA editing and with DNA repair, making connections between these processes and RNA-based silencing mechanisms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008